
85-738 EGIA Individual Project

App Development
for High School Students

Author: Christina Ma (qianoum)

Instructors: Sharon Carver (sc0e), Lauren Herckis (lrhercki)

18th December, 2020

Table of Content
CS education: the importance and challenges 3

Why should students learn CS? 3

What are some challenges in CS education? 3

Domain Challenge 3

Learning Challenge 3

A proposed solution: afterschool CS program 4
Project-based learning and near-peer mentoring 4

The proposed unit: app development for high school students 4

Similar educational interventions 5

Learner Profile: who are the students? 6
Learner characteristics 6

Developmental level 6

Prior experience 6

Individual differences 7

Learners in context 8

Learning Goals: what will students learn? 9
Conceptual Knowledge 10

Cognitive Level (students will be able to identify or define …) 10

Metacognitive Level (students will learn to …) 10

Procedural Skills 11

Cognitive Level (students will be able to …) 11

Metacognitive Level (students will learn to …) 12

Dispositions 13

Cognitive Level (students will gain ...) 13

Metacognitive Level (students will learn to …) 13

Assessment: how well do students learn? 14
Overview of Assessment Evidence 14

Use of Assessment 14

Design Justification 15

Specific Assessments Overview 16

Specific Assessments Rubrics 19

Project proposal 20

Storyboard development 22

User survey development 22

1

Code review 24

Project presentation 25

Workshop exit survey 26

Instruction: how should we teach? 28
General Description 28

Classroom Climate 28

Weekly Routines 28

Key Design Elements 29

Instruction and Assessment Timeline 30

Design Justification 32

Specific Activities 33

Collaboration agreement & design practices 33

Project proposal, Storyboard, User survey (development & revision) 34

App development & programming practices (basics / tailored) 34

Project presentation guideline & practice 36

Evaluation: how could we improve? 37
Research to Evaluate Educational Impact 37

Research Questions and Hypotheses 37

Experimental Design 37

Experimental groups & control group 38

Design quality assessment 38

Research to Evaluate Educational Implementation 39

Weekly workshop checklist 40

Conclusion: peer feedback and project reflection 42
Peer Feedback 42

Project Reflection 43

Self-Assessment of the Project PRODUCT 43

Self-Assessment of the Project PROCESS 44

Resources 46
Personal Background 46

Educational Materials 46

Professional Contact 46

Meeting Notes with Contacts 46

Appendix A: Selective Standards from CSTA K-12 Computer Science Standards (2017) 49

References 51

2

CS education: the importance and challenges

Why should students learn CS?

Computer Science (CS) is a rapidly developing field in both industry and academia, and the

fundamental concepts in CS including algorithmic thinking and data analysis become core to

students in the 21st-century. Learning CS practices and abilities not only provide students enough

tech literacy to survive the technological evolution, but it also enables them to become creative

thinkers and problem-solvers to tackle their own individual questions and also the challenges for

their generation and society.

The rigorous thinking habits and problem-solving abilities learned in CS projects will be

applicable to any field of study, so these are highly transferable skills. And students will also

become interdisciplinary thinkers and be able to use technological tools to facilitate other

disciplines that they care about.

Additionally, no one can work solely on their own in this complicated world. Real-world CS

applications always involve collaboration; therefore, practicing team skills in a collaborative

programming project is especially beneficial to students. This can also help foster equity and

open access to CS and connect very diverse students together.

What are some challenges in CS education?

Domain Challenge

Incorporating CS courses into K-12 education has gained more and more popularity; however,

many schools suffer from the lack of instructors and professional development resources (Yadav

et al., 2016).

Learning Challenge

Equity is a staggering issue in CS education, as students from lower social-economic status and

minority groups suffer from the lack of resources and prior exposure (Vakil, 2018), and girls can

be severely impeded by stereotype threat (Master et al., 2017).

Furthermore, many CS courses become disconnected to students’ intrinsic motivation and

interests. For example, according to the account of some high school students that I tutored

before, some pre-college CS courses focus more on specific programming languages or

theoretical constructs, which is hardly fun for students.

3

A proposed solution: afterschool CS program

Project-based learning and near-peer mentoring

Definitions:

● Near-Peer Mentoring: an instructional design model where mentors are proximal in age

(near-peer) but more skilled (Clarke-Midura et al., 2018).

● Project-Based Learning: an educational instruction method that fosters learning through

problem solving and application of knowledge in real-world settings (Merritt et al., 2017).

There are existing educational outreach organizations that offer near-peer mentoring in

project-based learning experiences, and it could possibly be one solution to the challenges

discussed above: the near peers can be supplementary instructors for students who don’t have

access to CS education resources in their own schools, and projects are a good way to expose

students to real-life problems and allow them to apply the CS knowledge they learned.

Various research showed that project-based learning (PBL) improves students’ learning in

different disciplines (Dole et al., 2017; Merritt et al., 2017), and it also reduces the performance

gap (Holmes & Hwang, 2016). However, PBL is not often implemented in schools’ curriculum

because of the additional costs on resources, time, and teachers’ training (Menzies et al., 2016).

Therefore, afterschool programs may have more flexibility to implement this strategy.

On the other side, near-peer mentoring was shown to have a positive effect on middle school

students because of role modeling (Clarke-Midura et al., 2018). Patient and knowledgeable

neer-peers could become informal mentors that trigger and maintain teens’ interests in

computing (Ko et al., 2018). Therefore, there may be an opportunity to combine the two methods

of PBL and near-peer mentoring to tackle the learning challenges in CS for adolescents.

The proposed unit: app development for high school students

In this project, I proposed a 10-hour educational intervention unit on a particular application of CS

for a specific group of learners: app development for high school students. The topic of app

development introduces a variety of interdisciplinary opportunities in all subject areas that a high

school teaches and beyond, and it allows students to apply their knowledge in CS and other

school subjects of their interests to solve any real-world problems that they care about.

This app development unit will be situated as an after-school program during weekends, with

1-hour instructional time each week for a span of 10 weeks. High school students of grade 11-12

4

will come to CMU campus for the weekly workshops (or meet remotely through zoom under

pandemic). High school students will be grouped into a team of 4-5 and paired with 1-2 CMU

students as project advisors. This unit is designed to be implemented in a real-world context as a

project in an educational outreach student organization at CMU: Project Ignite, which holds

10-weeks workshops for local Pittsburgh high schoolers each spring, and app development is a

popular project that’s often offered in Project Ignite. The following learner profile, goal setting,

assessment, instructional, and evaluation design of this unit are all based on this context.

Similar educational interventions

Some comparable counterparts of this unit under the formal school environment are a

light-weight term project at the end of an introductory CS course, or a brief, less in-depth version

of a CS product design course. Therefore, with some small tweaks on this unit (like compressing

the 10 weeks into 4 weeks), it can be used as a group project assignment in an introductory CS

course in college, or in an advanced CS course in high school.

The term-project of CMU’s introductory CS course 15112 requires 40 hours of individual work in a

span of 4 weeks, note that this course is also offered during summer with registrations of high

school upperclassmen. This unit, of course, should be much less intensive (only a 2~3-hrs

devotion is expected per week, including the 1-hour instructional time in the 10 weeks) and it

relies heavily on team collaborations.

The course Entrepreneurship and Product Design 1 in Winchester Thurston is a year-long course

open to students from grades 10-12, with a prerequisite of a prior “trimester” CS course. This

unit’s time span is much reduced (a 10 weeks project rather than a year-long course), so the

business or entrepreneurship component would be minimal, and students will be focused on the

design and programming sides of app development.

5

https://projectignitecmu.org/
https://www.cs.cmu.edu/~112/notes/term-project.html
https://www.winchesterthurston.org/lifeatwt/upper-school/uscurriculum/computer-science#fs-panel-19470

Learner Profile: who are the students?

Learner characteristics

Developmental level

Typically developed high school students at grades 11-12 (age 16-18) should be able to think

abstractly and analogically, reason logically in inductive and deductive ways, and grasp the

scientific process of problem definition and hypothesis testing (Berger, 2003). Thus, students

have the ability to handle a more demanding curriculum in high school and develop their own

understanding of complex scientific, philosophical, moral, and social concepts.

By mid-adolescence, students can rationally reason, make decisions, and plan under “cold”

cognitive conditions. Because of more mature brains, high school students have improved

memory and executive control capabilities, so they are better at time management and

organization than the younger teenagers. (Armstrong, 2016).

Students at this age are capable of perspective-taking and understanding others, and they also

start to care about the world beyond themselves and their future life and goals (Berger, 2003).

However, they may still have a more self-centered focus and firmly believe in their own ideas,

which may pose challenges to collaboration.

The physical development of students around this age is near adulthood. Students also show

more independence and begin making important decisions on their own, but they may develop

concerns or confusion about their future (Berger, 2003). They also have an intense desire for

social connections and a strong need for peer approval; therefore, their social development puts

a strong emphasis on the role of peers and friendships (Armstrong, 2016).

Prior experience

Students should have completed algebra I, be comfortable with generic CS concepts, be able to

code in at least one imperative language (any of JavaScript, Python, C, C++, and etc. suffice), and

have experiences using online resources including but not limited to development communities

and repositories (stackoverflow, python library documentation, GitHub, etc.). Students should

have experiences developing surveys (in any discipline) to collect people’s feedback or opinions,

understand how to avoid leading questions, and perform analysis on the data to extract the

common patterns in the responses. Moreover, some presentation experiences are needed, as

students should know how to make good presentations (be familiar with tools like powerpoint,

google slides, and general principles like provide less words and good visuals, fairly attribute

6

individual contributions in teamwork, and etc.) Students should also have team work experiences,

and be able to characterize their own collaboration and working styles.

Basic exposure to CS and design ideas is required for learning the general app development

programming practices, but no pre-existing knowledge in app development is needed.

Furthermore, students should have individual problem-solving skills and basic communication,

teamwork, and reflection dispositions, but they don’t necessarily need collaborative experiences

for programming projects specifically.

Students who have more experience programming may be able to pick up the app development

techniques more quickly, but they’re also likely to fall under the misconceptions of programming

as an individual task and writing code in their own habits without considering team collaboration.

So it will be important for them to learn how to write readable, modularized, and portable code

and practice code documentation for teamwork.

Students may be more used to the lecturing style of teaching and the norms in a formal school

context and these norms may prevent them from taking more active control of the collaboration

process in this less familiar informal after-school project context. Also, students may not be used

to a common collaboration style (which is full of take-turn communication and compromises) in

their cultural norms, so it will probably confuse them if the new norms aren’t explicitly discussed

or if their convention wasn’t included. Furthermore, students may knowingly or unknowingly

suffer from stereotype threats with regard to their social groups, which could make them less

comfortable expressing themselves.

Individual differences

Learners from different backgrounds are likely to have different interests and programming

abilities, some may be more attracted by the design side, some may want to spend more time on

the technical side. Also, students may have different comfort levels in collaboration and unique

ideas in terms of what they want to do with the app, so this unit will allow them to improve their

team communication and collaboration skills and compromise to achieve their individual goals.

Since this unit incorporates team collaboration, it will allow students to contribute in the directions

of their interests and collaborate with others with different backgrounds and fields of expertise.

Besides programming itself, the app development process would allow students to gain

experience in prototype development, user experience and market research, visual and user

design, or data collection, analysis, and visualization.

There’s a lot of flexibility to adjust the instructional emphasis based on individual differences. To

fully support teams consisting of students from various backgrounds, pre-entry surveys can be

used to assess students’ abilities and interests and help balance the team composition, and

7

instructions will also be tailored to meet students’ needs (e.g., add advanced features like move

apps onto phones if students all have a strong programming background, or add interdisciplinary

components to foster the intrinsic motivation for students from different backgrounds).

Learners in context

Students who participated in Project Ignite, the afterschool program in which this unit is designed

to be implemented, likely come from the greater Pittsburgh area, especially high schools that are

physically closed to the CMU campus because of the transportation limitation. Project Ignite has

collaborated with a variety of Pittsburgh high schools, including public schools, private schools,

catholic schools, charter schools, magnet schools, and home-school. Some specific examples

include Upper St. Clair, Mt. Lebanon, Peters Township, Taylor Allderdice, Winchester Thurston,

SciTech, Penn Hills, Pittsburgh Obama 6-12, Central Catholic, and Academy of Excellence.

Since some prior exposure to computational thinking is required, it’s likely that this project would

not be able to reach the communities that are most at-risk and can’t provide secondary school

students with early resources in CS. But it still includes a student body that comes from a broad

range of communities which has various values and priorities, and a broad range of high schools

which teaches with different practices and terminologies.

Therefore, as app development necessarily involves a lot of collaboration, it’s important to build

healthy norms in the teams, create a sense of belonging, and make students comfortable with the

norms of after-school projects with highly interactive and collaborative instructional styles.

Specifically, instructors should make sure that a natural critical learning environment is fostered,

the project team’s norm is collaboratively constructed so that “all students are listened to,

respected, and viewed as valuable contributors to the learning process.” (Gal-Ezer et al., 2014)

Particular attention is needed for populations that are likely under stereotype threats.

For example, students may not have personal laptops coming into the program, which will be

inconvenient for them to make significant contributions during the weekdays. Project Ignite can

lend laptops to students to enable more equitable access to the program, but an additional

laptop tutorial on general setup and basic coding pipeline may be needed.

Furthermore, students may have learned the required prior knowledge about CS and design in

different means and terminologies, it’s important to establish a common ground for the students

and be explicit about the definition of important concepts and how we will refer to them.

Although we’ve specified some prerequisite requirements for this program, to better personalize

the assessment and instruction plans based on students’ prior knowledge and skills and

accommodate for the diverse student body, a pre-entry survey should be used to get a better

sense of a particular group of students in the program and group the project teams.

8

Learning Goals: what will students learn?

* denotes standards adopted from CSTA K-12 Computer Science Standards (2017), Appendix A;

** denotes standards adopted from Barr & Stephenson (2011).

112 denotes standards adopted from the term-project of CMU’s introductory CS course 15-112

Conceptual Knowledge Procedure Skills Dispositions

Cognitive Goals

● I-A-1 Storyboard

prototype

● I-A-2-a MVP

● I-A-2-b Iterative Design

● I-A-3-a-(1) usability

● I-A-3-a-(2) readability

● I-A-3-a-(3) robustness

● I-A-3-b App

development tools and

languages

● I-A-3-c Version control

and design

documentation

Cognitive Goals

● II-A-1-a-(1) Project Description

● II-A-1-a-(2) Timeline Plan

● II-A-1-a-(3) Structural Plan

● II-A-1-a-(4) Resource List

● II-A-1-b storyboard

● II-A-1-c-(1) Survey Question

● II-A-1-c-(2) Survey Format

● II-A-1-c-(3) Feedback Analysis

● II-A-2-a use existing resources

● II-A-2-b-(1) usability

● II-A-2-b-(2) readability

● II-A-2-b-(3) robustness

● II-A-3-a-(1) collaborative design practices

● II-A-3-a-(2) programming

● II-A-3-a-(3) communication

● II-A-4-a slide deck

● II-A-4-b present to the public

Cognitive Goals

● III-A-1 responsibility

● III-A-2 confidence to

complexity

● III-A-3 persistence

● III-A-4 independence

● III-A-5 politeness and

patience when helping

Metacognitive Goals

● I-B-1 prioritize design or

programming principles

● I-B-2 evaluate design or

coding products

● I-B-3 adjust design or

programming tools

choice

Metacognitive Goals

● II-B-1 plan timeline

● II-B-2 monitor team MVP progress and

adjust design and plan

● II-B-3 monitor and adjust on

communication and collaboration

● II-B-4 evaluate design and app

development process

● II-B-5 monitor and adjust user survey

development process

● II-B-6 evaluate and adjust project

presentation

Metacognitive Goals

● III-B-1 evaluate growth

mindset

● III-B-2 monitor and

reflect responsibleness

● III-B-3 balance

help-seeking &

independence

9

https://www.kosbie.net/cmu/spring-20/15-112/notes/term-project.html#tp3del

I. Conceptual Knowledge
A. Cognitive Level (students will be able to identify or define …)

1. Storyboard prototype design in app development (define) (*3A-AP-13)

Storyboard: a storyboard demonstrates how users interact with the app with a series of

actions with ≥ 6 panels, ≥ 3 of which demonstrate features of the app (Figure 1) (112)

2. Fundamental principles in user design (define)

a) Aim for a Minimal Viable Product (MVP) (*3A-AP-18)

MVP: a product with just enough features to be usable by early customers who can

then provide feedback for future product development. The MVP for an app would

just be something interactable on a specific mobile device.

b) Incorporate an iterative design procedure (*3B-AP-17)

Iterative Design: a design methodology based on a cyclic process of developing,

testing, analyzing, and refining a product. For this project, it means collecting and

evaluating feedback from team members, project advisors, or other users for at least

once and incorporating them into the next iteration of design.

3. Common practices and tools for collaborative app development (identify)

a) Collaborative coding practices (*3B-AP-15, 3B-AP-21)

(1) Usability: modularization and reuse

(2) Readability: code comment, consistent variable naming

(3) Robustness: unit testing

b) App development tools and languages (*3B-AP-24)

E.g., IOS app: Xcode, Swift or Android app: Android Studio, Java, XML

c) Version control and design documentation tools (*3A-AP-22, 3B-AP-20)

E.g., GitHub, Terminal, Colab, Jupyter Notebook; Google doc, slide

B. Metacognitive Level (students will learn to …)
1. Assess the importance, evaluate the effectiveness of, and prioritize different design or

programming principles with regard to their MVP idea, e.g., asking questions like which

operating system should we use for our app, should we aim for more iterations of user

feedback or spend more time fleshing out the app itself, etc. (*3B-DA-07)

2. Evaluate the strengths and weaknesses of design or coding products (e.g., prototype

quality or degree of modularization) (*3B-AP-23)

3. Reflect on how suitable are the design or programming tools to their projects and adjust

by switching to alternatives if necessary (*3A-AP-15)

10

https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Iterative_design

II. Procedural Skills

A. Cognitive Level (students will be able to …)
1. Design and iteratively develop a MVP of app of their interest (*3A-AP-16)

a) Collectively write a project proposal, which include at least (112)

(1) Project Description: describe the bare minimum goals and functionalities for the

MVP of their app

(2) Timeline Plan: describe a feasible timeline for completing major features of their

MVP and the iterative stages to include user feedback

(3) Structural Plan: describe how the finalized team project will be organized in

different functions and/or files, and how team members will divide the job and

collaborate

(4) Resource List: a list of all external modules/ hardware/ technologies they are

planning to use; similar projects online and how some functionalities or algorithms

that are expected to be involved in their app can be built on them

b) Develop a storyboard prototype of their app (Figure 1.) (*3A-AP-13)

Use paper and pen or digital prototyping tools like figma if students are very

comfortable with the concept

c) Iteratively collect and analyze user feedback (*3A-AP-19)

(1) Survey Question: design a user survey with ≥ 3 questions about the app’s main

features (based on the storyboard prototype or a preview demo depending on the

stage of development) and ≥ 3 questions about design decisions, difficulties, or

disagreements during design process

(2) Survey Format: using google form or other tools, using the appropriate format

(e.g., multiple choice, yes/no, rating, short answer, etc.)

(3) Feedback Analysis: distribute the survey, interpret the collected user feedback,

update the team design document with the summary, and translate it into to-do

lists for each team member to implement users’ suggestions

2. Program the app of their interest based on existing resources

a) Adapt existing algorithmic solutions to solve their problems (APIs, libraries, GitHub

Repo, open-source projects) (*3B-AP-14, 3B-AP-16)

b) Improve the code usability, readability, and robustness (*3A-AP-21)

(1) Usability: better modularize and reuse the code

(2) Readability: add or change to more consistent comment and variable names

(3) Robustness: perform unit testing and debug (*3B-AP-21)

3. Collaborate on and manage a complex app development project

a) Adhere to agreed collaborative practices (*3A-AP-22, 3A-AP-23)

(1) Design: document design decisions in team’s google drive at least once per week

11

(2) Programming: backup, version-control, and document code in team’s GitHub

repository at least once per week

(3) Team communication: clearly express intentions, politely give constructive

criticism, and carefully listen to others

4. Present and communicate their MVP (*3B-IC-25)

a) Create a presentation slide deck for their MVP including the development process

and its social influence to general public

b) Present as a group in front of the audience including their peers, friends, family

members, teachers, and etc.

B. Metacognitive Level (students will learn to …)
1. Plan on their timeline and team roles to develop the MVP of their app

2. Evaluate and monitor their process and progress toward MVP, and adjust their plans or

designs accordingly

3. Evaluate and monitor the effectiveness of their communication or collaborative procedure

and adjust their communication style or collaborative agreement accordingly

4. Self-assess and evaluate their familiarity and work efficiency with the design and app

development process

5. Evaluate and monitor the effectiveness of their user survey development, audience

selection, distribution methods, and data analysis, and adjust their targeted focus,

adoption of tools, or design of questionnaires accordingly

6. Evaluate, reflect, and adjust their presentation slides design and ways of communicating

their product and conveying their message

12

Figure 1. Storyboarding, a way to develop physical prototype of mobile apps

III. Dispositions

A. Cognitive Level (students will gain ...)
1. Responsibility and care as a community member and team collaborator (**)

2. Confidence in dealing with complexity (**)

3. Persistence in working with difficult or open-ended problems (**)

4. Independence in critical thinking and problem solving (**)

5. Politeness when seeking help and patience when helping others

B. Metacognitive Level (students will learn to …)
1. Evaluate and monitor their own confidence towards a difficult problem, and adjust to

growth mindset if necessary

2. Monitor and reflect on how responsible are they in teamwork and adjust if they fail to

meet the team’s agreement

3. Plan on the balance of help-seeking and independent endeavor in the problem-solving

processes, monitor, reflect, and adjust according to problem’s difficulty and limitations on

time and resources

13

https://tmecley.wordpress.com/2014/03/05/relax-rest-paper-prototype-screen-prototype/

Assessment: how well do students learn?

Overview of Assessment Evidence

Performance Tasks:
● Project proposal (week 1-7)

○ I-A-2-b, I-A-3-c, I-A-3-b

○ II-A-1-a-(1), II-A-1-a-(2), II-A-1-a-(3),

II-A-1-a-(4), II-A-2-a,

○ II-B-1, II-B-2, II-B-3, II-B-4

● Storyboard development (week 2-7)

○ I-A-1

○ II-A-1-b, II-B-4

● User survey development (week 2-3,

and optionally week 6-7)

○ I-A-2-b

○ II-A-1-c-(1), II-A-1-c-(2), II-A-1-c-(3),

II-B-5

● Code review (week 4-5)

○ I-A-3-a-(1), I-A-3-a-(2), I-A-3-a-(3),

I-B-2

○ II-A-2-b-(1), II-A-2-b-(2), II-A-2-b-(3)

● Presentation (week 9-10)

○ I-A-2-a

○ II-A-4-a, II-A-4-b, II-B-6

Other Evidence:
● Observe that students are ...

○ Communicating with each other in respectful and efficient

manner (after week 1) [II-A-3-a-(1), II-B-3, III-A-1, III-A-5]

○ Updating design documentation Google Doc promptly (after

week 1) [II-A-3-a-(2), III-A-1]

○ Updating programming progress GitHub promptly and with

proper comment during development (after week 1)

[II-A-3-a-(3), III-A-1, III-A-2, III-A-3, III-A-4]

○ Addressing unexpected challenges and difficulty in

algorithm or design (after week 1) [I-B-3, II-B-2, II-B-4]

● When asked informally, students are able to …

○ Answer what is their MVP with their own words (after week

2) [I-A-2-a]

○ Describe how are user surveys incorporated as part of their

iterative design process (after week 3) [I-A-2-b]

○ Justify why are they choosing a specific programming

language or design tools for their app (after week 5) [I-B-1]

Self-Assessment / Reflection
● Workshop exit surveys (every week after workshop)

[III-B-1, III-B-2, III-B-3]

Use of Assessment

Since this unit is going to be implemented in an after school program, no grade or ranking will be

given, everyone will have a project completion note, and the team’s final MVP project will be the

reward that students get. The rubric and assessment results will be used to help project advisors

adjust the pace of the workshop, keep track of the students’ work, and to provide feedback to

students, so that we can maximize students’ learning gains.

14

Design Justification

All of the cognitive conceptual, procedural, or dispositional goals are framed around the heart of

learning -- understanding. Understanding is not just about the knowledge and skills, but it’s the

ability to thoughtfully and actively do the work with discernment, to self-assess, justify, critique

such doings, to transfer, and to create new knowledge (Wiggins, Wiggins & McTighe, 2005, p.41).

In order to check students’ understanding of core conceptual knowledge or procedural skills, it’s

important to see whether students can apply the learned knowledge and transfer it to new

contexts, so whether students would be able to transfer the knowledge and skill effectively onto

their own team project is the crucial part of the assessment design. Therefore, in this unit, a

series of authentic performance-based tasks, including Storyboard development, User survey

development, Code review, and Project presentation, are all designed to assess students’

understanding.

These are authentic challenges since the context of the assessment tasks is realistic: students

need to develop the app to address real-world problems of their concerns, and they will “do” the

storyboard, user survey, code, and presentation parts of the app development process, which is

“complex and multistage” in nature. Furthermore, these tasks are distributed across the 10 weeks

to enable “perform-feedback-revise-perform cycles,” so that there will be abundant opportunities

for students to “rehearse, practice, consult resources, and get feedback on and refine

performances and products.” (Wiggins, Wiggins & McTighe, 2005, p.154).

To facilitate this feedback loop, Workshop exit surveys can be used: they not only provide

students opportunities to regularly reflect on their learning, but they also offer timely feedback

that allow instructors to deal with students’ misconceptions during the program and push for true

understanding (Wiggins, Wiggins & McTighe, 2005, p.195).

Targeting at the metacognitive goals, students would need to improve their metacognitive

abilities to assess, evaluate, plan, monitor, and adjust, which are the 5 stages of the self-directed

learning cycle proposed in the book How Learning Works (Ambrose et. al, 2010, p.193). One of

the effective strategies that this book suggested is to let students submit staged progress and

plan for their work, which is the purpose of Project Proposal (Ambrose et. al, 2010, p.207). Exit

surveys are also helpful tools for self-reflection and assessment.

The validity of these assessments are ensured as the cognitive and metacognitive learning goals

are aligned with the design, the reliability is strengthened by the inter-rater checks between the

two project advisors per team, and equity is enforced as each assessment provides students with

multiple opportunities to improve their work and receive feedback, and each unmet criteria is

framed as “not yet met” to encourage a growth mindset and prompt advisors to help.

15

Specific Assessments Overview

Cognition
(Content)

Observation
(Format, Tasks Yield Evidence)

Interpretation
(Rubric, Criteria)

Project
proposal
[Formative]
I-A-2-b,
I-A-3-c,
I-A-3-b
II-A-1-a-(1),
II-A-1-a-(2),
II-A-1-a-(3),
II-A-1-a-(4),
II-A-2-a,
II-B-1, II-B-2,
II-B-3, II-B-4

Students will create a project proposal
as a team in the google doc that
includes the following 4 components.

1. Project Description

2. Timeline Plan

3. Structural Plan

4. Resource List

The rubric will be provided to scaffold
the proposal writing and structure the
assessment; a list of potential resources
(e.g., common modules for app
development) should be compiled by
instructors and made available.
The instructor will review the proposal to
assess students’ understanding of some
key knowledge including iterative
design principle and MVP, and
dispositions for team communication
and collaboration. Feedback will be
provided during subsequent workshops
and students need to further revise the
proposal.

Completeness:
● Does the proposal contain some

valid descriptions in all 4
components?

Feasibility:
● Does the timeline cover all 10

weeks and specify each
member’s roles with
justifications of their abilities?

● Does the resource list cover the
things they’ll need in order to
develop the app according to
their description of their
app-specific functionalities (e.g.,
if they want to do something
with computer vision, have they
included openCV)?

● Is the MVP they specified
accomplishable in 10 weeks
based on their job division and
timeline plan?

Clarity:
● Does the project description and

structural plan clearly describe
what they will do in the end?

Storyboard
development
[Formative]
I-A-1
II-A-1-b,
II-B-4

Students will create a storyboard with ≥
6 panels, and ≥ 3 of those should
demonstrate features of the app. Some
paper storyboard examples like Figure 1.
will be given as demonstration.
Feedback will be provided during
subsequent workshops and students
need to further revise the storyboard.

Completeness:
● Does the storyboard contain ≥ 6

panels with ≥3 of them
illustrating the app’s feature?

Clarity:
● Is the user interaction illustration

clear and intuitive?

User survey
development
[Formative]
I-A-2-b
II-A-1-c-(1),

Students will create a user survey using
google form or other tools, with ≥ 3
questions about the app’s main features
(based on the storyboard or a code
demo), and ≥ 3 questions about design

Completeness:
● Does the survey include ≥ 3 + 3

questions for the app’s main
features and design decisions?

Reflection:

16

II-A-1-c-(2),
II-A-1-c-(3),
II-B-5

decisions, difficulties, or disagreements
during the design process, with
appropriate format for the questions.
Students will also distribute the survey
to their friends or other members,
interpret the collected user feedback,
and update the team design document
with the summary and to-do list.
Feedback will be given throughout the
weeks, when students come up with
survey questions, decide on a user
sample, discuss the user data, and
optionally implement another iteration of
user feedback collection.

● Have students collect the survey
and analyze user feedback to
incorporate user feedback into
design?

Quality:
● Is the format of the questions

(e.g., multiple choice, yes/no,
rating, short answer, etc.)
consistent with the question
they asked?

● Is the user sample accurately
representing the potential users
of their app?

Code review
[Summative]
I-A-3-a-(1),
I-A-3-a-(2),
I-A-3-a-(3),
I-B-2
II-A-2-b-(1),
II-A-2-b-(2),
II-A-2-b-(3)

Students will be seeing code excerpts
from existing online resources and build
the functionalities of their own app
based on other projects. Instructors will
be observing whether the students
divide the code into appropriate
modules, add comments, adapt to a
consistent variable naming scheme, and
plan unit tests for their code.
To scaffold the process, instructors
should compile excerpts with imperfect
style and point out its usability,
readability, and robustness issues.
A sample unit test that covers all edge
cases will be performed afterwards for
reference and also to check for
students’ programming products.

Usability (on a percentage scale):
● How many of those large

functions have students broken
or modularized into small chunks
of functions that are ≤ 30 lines
each?

Readability (on a percentage scale):
● How many flaws in styles have

students spotted and corrected?
Robustness (on a percentage scale):
● How many edge cases have the

test code that students
developed cover?

Project
presentation
[Summative]
I-A-2-a
II-A-4-a,
II-A-4-b,
II-B-6

Students will be creating a slide deck for
their project and MVP, and they will be
presenting the slide as a team to a
general public audience.
They should talk about what their MVP
is and how they arrived at it, including
their project’s goal, social influence,
timeline, iterative design based on user
research, trade-offs, and reflections to
the original plan they made during the
process. They should also discuss their
collaboration efforts like job division and
roles, and attribute individual ideas and

Completeness:
● Does the team complete the

MVP they specified?
Communication:
● Is the social influence and the

purpose of their app clearly
communicated?

● Is the user survey data and
feedback used as evidence to
justify their app design?

Collaboration:
● Does the team communicate

individuals’ unique contributions

17

contributions.
Guidelines on presentation slide
creation will be discussed in the group
(to refresh students’ prior knowledge).

to the project?
● Does the team do the job they

agreed to do in the project
proposal in a responsible and
collaborative manner, e.g.,
update the design &
programming documentation
regularly?

Workshop
exit surveys
[Formative]
III-B-1, III-B-2,
III-B-3

Students will complete one exit survey
after each workshop to reflect on 3 main
questions about their learning, and
some other questions to provide
feedback to instructions:
1. What are the biggest take-aways

you learned from today’s workshop?
2. What are the most confusing

concepts you found in today’s
workshop?

3. What might you improve on or
prepare for in order to better make
use of the workshop’s time next
week?

Students will submit the response to
their project advisors in Google Form or
paper (remote or in-person).

Completeness:
● Does the student submit

responses to all questions?
Reflection:
● Does the students’ summary on

take-aways correctly capture the
key concepts (e.g., what is
iterative design, MVP, good
programming practices, etc.
depending on the week) and
show a fair understanding?

● Does the students’ reflection on
what they can improve on
showcases their metacognitive
abilities?

Observation:
Updating
programming
progress
[Formative]
II-A-3-a-(3),
III-A-1, III-A-2,
III-A-3, III-A-4,
II-B-4

Students will need to promptly and use
meaningful comments to document their
code, and instructors will review their
GitHub push history every week to see if
they are making proper progress and
completing the tasks they agreed to do.
Students should clean-up and organize
their group repository at least once per
week as a team, and they should
regularly commit to backup their work
during development.

Minimal Completeness:
● Have the student push to their

GitHub team repository at least
once per week?

Adequate Frequency:
● Have students commit to GitHub

at least once per hour during the
development stage with
readable comments on
meaningful progress (change ≥
30 lines of code)?

18

Specific Assessments Rubrics

The team’s Project Proposal, Storyboard, and User Survey should be evaluated using the rubrics

in the following sections, which question sections could be made available to students as

guidelines, with the assessment criteria (grey area) only visible to advisors, as the questions in

rubrics should be used as a guideline to scaffold the discussion and collaborative process, not a

limitation on students’ creativity or different ways to achieve their product.

For all of these assessments, specific rubrics items are designed to align with the goals, which

advisors can review together with the rubrics to enforce the validity of these assessments, that is,

each student is assessed based on their individual contributions and group work is assessed with

accurate attribution to individual work. Advisors should discuss the rubric items as a team to

highlight the boxes they agree upon (in person), or record their assessment using separate

google docs each time based on the template rubrics below (remote), which will ensure the

reliability of these assessments.

These rubric items and prompts the “Not yet” box are there to help advisors discuss the reflection

questions, and work together to generate feedback that they need to provide to students in the

beginning of subsequent workshops (as a part of the built-in step 2 & 3 in the weekly routines).

Specifically, advisors should provide students with feedback targeted at the weaknesses in

different tasks, such as

● The timeline plan may not be feasible in 10 weeks because this function of the app is

unlikely to be implemented in 1 week

● The 4th and 5th questions in your user survey may need to be changed, can you think of

ways to improve them (e.g., should be open-ended instead of closed-ended)

But advisors can always ask general guiding questions to scaffold this metacognitive reflection

process (assessment as instruction idea form Big Ideas Synthesis):

● What have you done in XX that’s really effective, and why?

● What have you done in XX that’s not working, and why?

Therefore, students would have multiple opportunities to further revise their project products like

proposal, storyboard, and user survey for 4-5 times each based on advisors feedback and group

reflections (please refer to the Instruction and Assessment Timeline section for specific feedback

timelines), which is a practice that fosters equity of these assessment designs on different types

of learners.

19

https://docs.google.com/document/u/0/d/1p1cZpKz1PKRc9Tgzz9yVl5pTX473mXq6GkFLryrmLmI/edit

Project proposal

Advisors can describe project proposal as

● To scaffold your iterative MVP development, your team will create a project proposal in a

google doc. You’ll need to at least include a Project Description, Timeline Plan, Structural

Plan, and Resource List. And here we just listed some guiding questions to help you get

started (rubrics).

They can further explain what they mean by MVP, iterative design, and these 4 components as

described in the goal description. They should also make it clear that it’s an iterative process and

students aren’t expected to produce a fully developed plan in week 1:

● Try to come up with some ideas on what you want to do, but don’t worry if you don’t know

what would be a feasible timeline or where to find good resources, we’ll help you with

that based on what you want to do with your app. You’ll get a more concrete idea as we

talk more about app development as well and you’ll have until week 7 to refine your

project proposal.

Project Proposal Rubrics Week: Team: Advisors:

Component Questions Yes: met criteria Not yet: how to help?

Project
Description
I-A-2-b,
II-A-1-a-(1)

Completeness: Does the
proposal contain valid
descriptions of this
component?

Yes: students
described their goals
and MVP in a Project
Description section.

No: how might you help
students better frame their
MVP next week?

Clarity: Does the
description of MVP
clearly describe what
they will do in the end?

Yes: students’
descriptions are
understandable to
non-team members.

No: what needs to be
further clarified about their
MVP? How would you
discuss it next week?

Timeline
Plan
II-A-1-a-(2),
II-B-1

Completeness: Does the
proposal contain valid
descriptions of this
component?

Yes: the timeline plan
cover all 10 weeks of
workshops

No: which weeks’ plans are
unclear? How may you help
them better develop a
sense of timeline?

Feasibility: Is the MVP
they specified
accomplishable in 10
weeks based on their
timeline plan?

Yes: every week’s
breakdown is
reasonable and
accomplishable based
on students’ abilities.

No: which weeks’ plans are
less feasible and why? How
may you help them to
better scope their MVP and
distribute weekly work?

20

Structural
Plan
I-A-3-c,
I-A-3-b,
II-A-1-a-(3)

Completeness: Does the
proposal contain valid
descriptions of this
component?

Yes: each member’s
roles and the
organizational format
of their MVP are
specified.

No: how may you help
each student figure out
how they could make
unique contributions? How
can they improve the
organizational structure?

Clarity: Does the
structural plan clearly
describe what they will
do in the end?

Yes: their description
of their final product
organization is
understandable.

No: what is causing the
confusion or inclarity? How
may you help them better
frame their structure?

Feasibility: Is the MVP
they specified feasible
based on their job
division with justifications
of their abilities?

Yes: their described
job division would
enable them to
accomplish their MVP
in 10 weeks.

No: how may you help
them to learn about each
other’s strengths and
weaknesses to optimize
their job divisions?

Resource
List
II-A-1-a-(4),
II-A-2-a

Completeness: Does the
proposal contain valid
descriptions of this
component?

Yes: they’ve started to
compile a list of
helpful resources.

No: how might you point
them towards helpful
resources and good
strategies to search for
resources?

Feasibility: Does the
resource list cover the
things they’ll need to
develop the app?

Yes: they listed all
necessary resources
for their MVP-specific
functionalities

No: what have they left
out? (e.g., if they want to do
something with computer
vision, they need openCV)

General
II-B-1
II-B-2
II-B-3
II-B-4

Reflection (after 1st
week): Have students
addressed the feedback
from the previous week
in all components?

Yes: students
addressed all
feedback discussed
and improved on each
section.

No: what have they missed
and why they missed it?
How might you emphasize
or effectively communicate
your advice next week?

21

Storyboard development

Advisors can describe storyboard development as

● To scaffold your MVP development, your team will create a storyboard on paper or digital

platform (show examples like Figure 1, and explain key terms like storyboard as described

in the goal description if the students are not familiar with it). You’ll need to at least include

at least 6 panels with more than 3 showcasing major app features. And here we just listed

some guiding questions (rubrics) to help you get started.

Again, advisors should also make it clear that it’s an iterative design process and students aren’t

expected to produce a fully developed plan in week 1:

● Don’t worry if you don’t know what would be a feasible feature for your app, we’ll help

you with that based on the goal of your app. You’ll develop more concrete ideas as we

talk more about app development and you’ll have until week 7 to refine your storyboard.

Storyboard Development Rubrics Week: Team: Advisors:

Questions Yes: I-A-1, II-A-1-b, II-B-4 Not yet: how to help?

Completeness: Does the
storyboard contain ≥ 6
panels with ≥3 of them
illustrating the app’s feature?

Yes: students included all
necessary components of
the storyboard.

No: what’s the point of confusion
or difficulty? How might you help
students better understand the
idea of storyboarding next week?

Clarity: Is the user
interaction illustration clear
and intuitive?

Yes: students’ descriptions
are understandable to
non-team members.

No: what needs to be further
clarified in their storyboard? How
would you discuss it next week?

Reflection (after 1st week):
Have students addressed
the feedback from the
previous week?

Yes: students addressed
all feedback about the
storyboard in discussion
and improved this section.

No: what have they missed and
why they missed it? How might you
emphasize or better communicate
your advice next week?

User survey development

Advisors can describe user survey development as

● To make your MVP app more usable and apply the iterative design principles, your team

will create user surveys using google forms or other tools of your choice (explain key

terms like iterative design and user survey to activate students’ prior knowledge). You’ll

need to at least include at least 3 questions about the app’s main features based on your

22

storyboard or app demo and at least 3 questions to help your design decisions. For

example, if you don’t know whether to use a button or to use a slider, ask the users!

● Here we just listed some guiding questions (rubrics) to help you get started (activate

student’s prior knowledge for data collection and analysis).

● More questions: What are some common format of user survey questions? Who’s your

target audience? What would you do after you’ve collected the data? How would you use

user surveys to iteratively improve your MVP?

Advisors should also mention that they may do the user surveys for 1 or 2 rounds depending on

their progress and development of MVP:

● You’ll do the user research from week 2 to 3 and if the app development went well,

another round on week 6 to 7. Usually in a design process you’ll want more iterations of

user feedback and improvement, but given our limited time, you should think about how

you would best use the time and put it into your timeline plan of the project proposal.

User Survey Development Rubrics Week: Team: Advisors:

Questions Yes: I-A-2-b, II-A-1-c, II-B-5 Not yet: how to help?

Completeness: Does the
survey include ≥ 3 + 3
questions for the app’s main
features and design
decisions?

Yes: students included all
necessary components of
the user survey.

No: what’s the point of confusion
or difficulty? How might you help
students better understand the
idea of user research next week?

Quality: Is the format of the
questions consistent with
the question they asked?

Yes: students’ use of
question formats are
appropriate (e.g., multiple
choice, yes/no, rating,
short answer, etc.)

No: what causes the inconsistency
(e.g., a misunderstanding on how
to ask open questions)? What are
some better ways to frame their
questions and how would you
discuss it with students?

Quality: Is the user sample
accurately representing the
potential users of their app?

Yes: students identify the
appropriate group of users
for their MVP.

No: what’s inaccurate of their user
target based on their MVP goals?
How may you help them to find the
right group?

Reflection (after 1st week):
Have students addressed
the feedback from the users
and advisors?

Yes: students collected the
survey and analyzed user
feedback to incorporate
user feedback into design.

No: what have they missed and
why they missed it? How might you
emphasize or better communicate
your advice next week?

23

Code review

Code excerpts with purposeful impairment on the usability, readability, and robustness will be

provided, and students will submit their revised code with a unit test to GitHub. The code needs

to be compilable, but the usability, readability, and robustness can then be assessed

independently (e.g., it may be only 30% robust but 90% usable). Since this activity requires

individual work and has a reference solution (the unmodified version of code), the advisors can

split the work and switch to assess different students in different weeks.

Advisors will review individual students’ revisions using the following rubrics, record assessments

in google docs, and provide targeted feedback to individual students to help them better

understand the concept of code usability, readability, and robustness. This activity will be

conducted during step 4 of weekly routines on week 4 and 5 to provide multiple opportunities.

Code Review Rubrics Week: Student: Advisor:

Questions 90%: met goals
I-A-3-a, I-B-2, II-A-2-b

60%: what went
wrong?

30%: how to help?

Usability: How many
large functions have
students broken into
small chunks?

90% of the code is
modularized into
reusable functions ≤
30 lines each.

What’s the main
point of confusion
or difficulty?

How may you help
students understand
modularization and the
importance of code reuse?

Readability: How
many flaws in styles
have students
spotted and
corrected?

90% of the code
functions have
consistent variable
naming and
readable comments.

What’s preventing
them from
converting all
functions into
readable formats?

How may you help
students understand the
concept and importance of
code readability?

Robustness: How
many edge cases
have the test code
that students
developed cover?

90% of the bugs
were catched by
their unit test, or
90% test cases
passed their code.

Which part of the
code have the
students failed to
cover with their unit
tests?

How may you help
students understand the
concept and importance
of unit testing and write
better test cases?

24

Project presentation

Students will practice their presentation during the week 10 workshop, in which both advisors will

assess their practice presentation and also the team’s summative work in the past 9 workshops.

Advisors should record their assessment results in google docs and provide immediate feedback

after students’ presentation in the group discussion (step 3 of weekly routines).

Advisors should talk about students’ strengths and highlight their efforts and learning gains

during this collaborative process; the weaknesses of their projects should also be discussed (e.g.,

advisors can selectively use some guiding questions in the “Not yet” box to scaffold the group

discussion), but this should more be a group reflective moment to identify rooms and suggest

strategies for improvements, and further motivate students and help them develop metacognitive

abilities.

Final Project Rubrics Week: 10 Team: Advisors:

Questions Yes: met goals I-A-2-a,
II-A-4-a, II-A-4-b, II-B-6

Not yet: how to improve?

Completeness: Does
the team complete the
MVP they specified?

The team has completed
the MVP they specified in
their project proposal.

What’s the main difficulty? What’re
some lessons learned? What should
be avoided, what’s effective, what
could have been done better?

Communication: Is the
social influence and
the purpose of their
app communicated?

The team has clearly and
effectively conveyed the
importance of the problem
their app targeted at.

What’s their original goal for MVP?
How does it help to improve society?
What’s ineffective in communication
and how to improve?

Communication: Is the
user survey data
presented to justify
their app design?

The team showcased how
they incorporate user
feedback with evidence of
design adjustments.

What are some key designs of this
MVP that address users needs? How
to better visualize their collected user
data and iterative design?

Collaboration: Does
the team communicate
individuals’ unique
contributions?

The team has each
member talk about their
own contributions to the
project and job divisions.

How have they divided the jobs? Who
has done which part of the work? How
to better discuss and attribute
individual and group work?

Collaboration: Does
the team do the job in
the project proposal in
a responsible and
collaborative manner?

The team has updated the
design & programming
documentation regularly,
members do their agreed
part of work promptly.

What’s the main difficulty and obstacle
in their collaboration? How they
addressed it and how may they do
better? What collaborative skills and
dispositions have they learned?

25

Workshop exit survey

After each workshop, students will complete and submit a workshop exit survey (paper form if

in-person, Google Form if remote) adopted from the 1-minute essay idea and also the Figure 11.8

Weekly Feedback Form in Understanding by Design (Wiggins, Wiggins & McTighe, 2005).

Project advisors should choose one of the 2 questions for question 1-2 in the same box based on

their feeling of the workshop or simply alternate different versions across the weeks. For

example, if the workshop went smoothly, they may choose V1, and if they feel like students really

struggle with the concepts, they may choose V2 to probe what went wrong.

Advisors should review the survey questions 1 & 3 with the rubrics (only available to advisors) to

gauge students’ metacognitive abilities to reflect their learning, their understanding of the key

concepts, and muddy points or questions that need to be addressed, so that they can provide

clarifications in the beginning of the next workshop (which is a built-in procedure in the weekly

routines). For questions 2 & 4, advisors should use them as feedback to iteratively improve their

instruction and adjust their lesson plans accordingly.

Workshop Exit Survey Week: Name:

Question 1:
● [V1] What are the biggest take-aways you learned from today’s workshop?
● [V2] What are the most confusing concepts you found in today’s workshop?

Question 2:
● [V1] What worked the best for you this week? What activity, assignment, technique, tool,

or discussion was the most interesting or helped you learn the most? Why?
● [V2] What didn't work for you this week? What activity, assignment, or discussion was

the most confusing, boring, or unhelpful? Why?

Question 3: What might you improve on or prepare for in order to better make use of the
workshop's time next week?

Question 4: Please answer Yes or No to the statements below. Please suggest how we might
improve and further help you for any No response.

We were given enough freedom in how to go about achieving our goals. Yes No

We were given enough scaffolding so that I’m clear about where we are coming
from, where we would go next and how exactly we could achieve it.

Yes No

26

Workshop Exit Survey Rubrics Week: Student: Advisors:

Question Yes: III-B-1, III-B-2, III-B-3 No: what to do?

Does the student submit
responses to all of the
questions?

Yes: completed in time and
write meaningful responses
(not just N/A’s).

No: how might you motivate
students to complete exit
surveys?

Does the students’ summary
on take-aways correctly
capture the key concepts of
the week and show a fair
understanding?

Yes: students can explain in
their own words on concepts
such as iterative design,
MVP, good programming
practices, etc.

No: what’s missed or
misunderstood? How would
you discuss it in next week’s
workshop?

Does the students’ reflection
on what they can improve on
showcases their
metacognitive abilities?

Yes: students accurately
identify weaknesses or
inefficiencies and propose
better strategies.

No: what are some problems
they noticed or failed to
identify? What are some
strategies to solve them?

27

Instruction: how should we teach?

General Description

Classroom Climate

If the workshops are in-person, students will be using CMU classrooms or library study rooms

open for reservation, where they have access to all sorts of multimedia device like projector,

whiteboard, individual laptops (sponsored or students’ own devices), and convenient tech

support; they would also have access to the makerspace or laboratory resources on campus so if

their app include interdisciplinary components of robotics, they will have the resource to do so.

It’s important to have abundant maker resources at hand if needed, as illustrated in the Making

chapter of The ABCs of How We Learn (Schwartz, Tsang & Blair, 2016). These classrooms or

conference rooms would have the right capacity for 5-7 people and students can sit around the

table to establish an atmosphere of equal contribution and interactive collaboration in the

workshops, rather than a lecturing style.

If workshops are remote, students are assumed to have necessary digital devices like laptop,

microphone, and camera. They will join the zoom rooms for weekly workshops, and breakout

rooms can be used to enable multi-threads discussion in the meantime, so advisors can provide

more targeted and personal feedback when needed and give students more chances to talk .

Advisors are encouraged to bring students for a walk on campus as a break (if in person), or play

some ice-breaker online games (if remote), which allow students to chat more casually with peers

and develop a sense of belonging and facilitate modeling (Clarke-Midura et al., 2018).

Weekly Routines

The overall routines for each week would be a 1 hr workshop during the weekend, and expected

3 hrs of work during the following weekdays. Students should do the job they agreed to do

during the workshop collaboratively, and they are encouraged to use email or social media to

communicate with each other. The routine for each workshop would be:

1. [5 minutes] Greeting & Overview

2. [10 minutes] Individual updates on prior week’s work & questions & feedback from project

advisors on students’ progress, assessment tasks, and misconceptions

3. [10 minutes] Group discussions and reflections on the revisions and next steps

4. [10 minutes] Advisors’ brief tutorial or activities of important new concepts, tools, or

practices (basics in earlier workshops and tailored to the team’s MVP in later workshops)

28

5. [5 minutes] Break and casual conversations

6. [15 minutes] Group work on the next tasks & MVP, advisors provide guidance alongside

7. [5 minutes] Closing, Summary & Workshop Exit Surveys

Besides the greeting and break, the 2nd step is a coaching style that supports practice with

feedback, the 3rd step is open exploration, the 4th step here involves more direct instruction, and

the 6th step is facilitation via guided discovery.

Key Design Elements

The book Understanding by Design proposed an useful framework (WHERETO) for key elements

in instructional design (Wiggins, Wiggins & McTighe, 2005, p.28); the instruction activities of this

unit have all these elements implemented, and the design is also aligned with the learning

principles in How Learning Works (Ambrose et. al, 2010).

• Where & Why? The project proposal that students would develop is an instruction that guides
the purpose finding and navigation process for students, since when they discuss, specify,
receive feedback on, and modify their MVP and timeline, they will gain a clearer and clearer idea
about where does the project come from and where will it go.

• Hook: The project proposal would hook and hold students’ interests since they will be coming
up with an app of their design to address the problem they care about.

• Equip: All of the instructional pieces, either directed, facilitated, exploratory, or coached, such
as programing tutorial, user feedback analysis, proposal writing, and stroyingboard development,
will equip students to explore and experience the iterative process of app development and help
them complete their MVP.

• Rethink / Reflect / Revise: The feedback sections and exit tickets in each workshop are
opportunities for students to receive timely feedback, practice metacognitive abilities, and refine
their work.

• Evaluate: The development and constant refinement of their proposal, the collection of user
feedback, and the project presentation at the end of all workshops are all opportunities for
students to evaluate their work.

• Tailor to Context & Learner Characteristics: The direct instructions on app development &
programming practices will be tailored around the tools that the students would find helpful, and
the exploratory or guided discovery will all be highly tailored around the team’s project & MVP.

• Organize to Optimize: There will be a break by 40 minutes of workshops to enable sustained
engagement, and the routines are all very interactive to maximize effective learning.

29

Instruction and Assessment Timeline

Goal Alignment Instruction Assessment

Week 1
I-A-1, I-A-2-b,
I-A-3-c, I-A-3-b,
II-A-1-a-(1),(2),(3),(4),
II-A-1-b, II-A-2-a,
II-B-1,-2,-3,-4
III-B-1,-2,-3

During Workshop:
● Collaboration Agreement &

Design Practices
● Project Proposal for MVP
● Storyboard Development

After Workshop:
● Project Proposal Assignment
● Storyboard Assignment

During Workshop:
● Observation (communication)

After Workshop:
● Exit Survey

Week 2
I-A-1, I-A-2-b,
II-A-1-a-(1),(2),(3),(4),
II-A-1-b,
II-A-1-c-(1),(2),(3),
II-A-2-a,
II-B-1,-2,-3,-4
III-B-1,-2,-3

During Workshop:
● Proposal & Storyboard

Revision
● User Survey Development
● App Development &

Programming Practices
(basics)

After Workshop:
● User Survey Assignment
● MVP Development

During Workshop:
● Observation (communication)
● Project Proposal Feedback
● Storyboard Feedback

After Workshop:
● Exit Survey

Week 3
I-A-2-b,
II-A-1-a-(1),(2),(3),(4),
II-A-1-c-(1),(2),(3),
II-A-2-a,
II-B-1,-2,-3,-4,-5
III-B-1,-2,-3

During Workshop:
● User Survey Revision &

Analysis Discussion
● Proposal & Storyboard

Revision
After Workshop:
● MVP Development

During Workshop:
● Observation (communication,

design, programming)
● Project Proposal Feedback
● Storyboard Feedback
● User Survey Feedback

After Workshop:
● Exit Survey

Week 4
I-A-3-a-(1),(2),(3),
I-B-2, II-B-1,-2,-3,
II-A-2-b-(1),(2),(3),
II-A-3-a-(3),
III-A-1,-2,-3,-4
III-B-1,-2,-3

During Workshop:
● App Development &

Programming Practices
(tailored)

After Workshop:
● MVP Development

During Workshop:
● Observation (communication,

design, programming)
● Code Review

After Workshop:
● Exit Survey

Week 5
II-A-3-a-(3),
II-B-1,-2,-3,-4,
III-A-1, III-A-2, III-A-3,
III-A-4

During Workshop:
● Proposal Revision
● App Development &

Programming Practices
(tailored)

During Workshop:
● Observation (communication,

design, programming)
● Project Proposal Feedback
● Code Review

30

III-B-1,-2,-3 After Workshop:
● MVP Development

After Workshop:
● Exit Survey

Week 6
I-A-2-b,
II-A-1-c-(1),(2), (3),
III-B-1,-2,-3,-5

During Workshop:
● App Development &

Programming Practices
(tailored)

● (optional) User Survey 2nd
Iteration

After Workshop:
● MVP Development
● (optional) User Research

Implementation 2nd Iteration

During Workshop:
● Observation (communication,

design, programming)
● User Survey Feedback

After Workshop:
● Exit Survey

Week 7
I-A-2-b,
II-A-1-c-(1),(2),(3),
II-B-5
III-B-1,-2,-3

During Workshop:
● User Survey Revision &

Analysis Discussion
● Proposal & Storyboard

Revision
After Workshop:
● MVP Development

During Workshop:
● Observation (communication,

design, programming)
● Project Proposal Feedback
● Storyboard Feedback
● User Survey Feedback

After Workshop:
● Exit Survey

Week 8
II-A-3-a-(3), III-A-1,
III-A-2, III-A-3, III-A-4
III-B-1,-2,-3

During Workshop:
● App Development &

Programming Practices
(tailored)

● MVP Finalizing & Polishing
After Workshop:
● MVP Development

During Workshop:
● Observation (communication,

design, programming)
After Workshop:
● Exit Survey

Week 9
I-A-2-a,
II-B-6
III-B-1,-2,-3

During Workshop:
● Project Presentation

Guideline
● MVP Finalizing & Polishing

After Workshop:
● MVP Development

During Workshop:
● Observation (communication,

design, programming)
After Workshop:
● Exit Survey

Week 10
II-A-4-a, II-A-4-b,
II-B-6
III-B-1,-2,-3

During Workshop:
● Project Presentation Practice

After Workshop:
● Project Presentation

Preparation

During Workshop:
● Observation (communication,

design, programming)
● Project Presentation

Feedback
After Workshop:
● Exit Survey

31

Design Justification

The whole unit is centered around project-based learning, and students would be coming up with

their own idea of an app, so that they have high intrinsic motivation. Since the specific problem

that the students’ app will address depends on their own interests, students have the internal

drive to solve the challenges they encounter in app development and are naturally motivated to

learn more, so the instructional activities of this unit could be tailored to spur students’ intrinsic

motivation. Also, the highly discussion-based weekly routines are designed to keep students’

sustained engagement, which involve the highest level of cognitive engagement, i.e., interactive

learning, according to the ICAP framework (Chi & Wylie, 2014).

The instructions all focus on facilitating students’ authentic understanding of app development,

so numerous practice, feedback, reflection, and revision opportunities are built-in. Regular

feedback loops address students’ misconceptions and enable them to improve metacognitive

abilities. Although this unit is collaborative in nature, the group is so small (4-5 students per team)

that different students’ needs, interests, and capabilities can receive abundant attention from

project advisors. Therefore, the sufficient discussion time and small size of project teams allow

advisors to provide personalized feedback and be responsive to individual variability in learning

strategies and challenges.

According to Barron et al. (1998), good project-based learning in schools include the following

four elements: (1) learning-appropriate goals; (2) learning resources; (3) multiple opportunities for

feedback and revision; and (4) a social environment that supports original production and

interaction. This unit’s instructional activities are not only aligned with the learning objectives, but

they also provide ample built-in opportunities for timely feedback, reflections, goal setting,

existing app development resources for appropriation, and a peer- and near-peer-interaction

environment to foster collaboration, innovation, and the dispositional skills of accepting failures

and constructive criticisms. These designs are also consistent with the major elements that

facilitate learning identified in the Making chapter of The ABCs of How We Learn (Schwartz,

Tsang & Blair, 2016).

Additionally, the weekly routine of practice with coaching (2nd step), exploration (3rd step

discussion), and then direct instruction and explanations (4th step) is consistent with the

Just-In-Time Telling idea, as students would be able to accumulate experiences and understand

the contexts of the problems before the instructors provide high-level structures for the

phenomena, present diverse Worked Examples, or explain the elegant algorithmic solutions of

the problem (Schwartz, Tsang & Blair, 2016).

Furthermore, this discussion routine enables advisors to build on students’ prior knowledge and

promptly address misconceptions as reflected by their responses to last week’s exit surveys

32

(Ambrose et. al, 2010), where the workshop exit survey reflects the “assessment as instruction”

idea, as it’s not only an assessment tool for instructors, but also a learning opportunity for

students to practice their metacognitive skills (Wiggins, Wiggins & McTighe, 2005).

Also note that the weekly routine involves an overview and a summary of the workshop in the

beginning and the end, which follows the nice whole-part-whole learning circle that facilitates

understanding and knowledge organization (Wiggins, Wiggins & McTighe, 2005). And the

greeting in the beginning and the casual conversation break in the middle of workshops can

contribute to a welcomed and inclusive norm and help build a sense of community (Ambrose et.

al, 2010).

Specific Activities

Collaboration agreement & design practices

In Week 1 (1st workshop), use step 1-2 of the routine to introduce the general structure of

workshops, give a high level overview of the 10 weeks and goals, and let students get to know

each other and break the ice with games like 2 truths 1 lie. Additionally, since there is such a large

focus on collaboration in the project, advisors should use step 3 guided discovery to activate

students’ prior knowledge on collaboration and design practices (activate prior knowledge idea

from Big Ideas Synthesis); for example, advisors can ask guiding questions like the below (some

adopted from EGIA):

● What’s each member’s collaboration, working, and communication style?

● What contributions will each member make?

● What practices will make everyone comfortable? What may make one uncomfortable?

● Best times of day to collaborate? Best way to communicate?

● Any commitments that the team universally agree on?

● What’re some important concepts and practices in design?

● What makes a design successful? What makes a design process smooth?

Note that students may come from very different backgrounds and have different working styles,

make sure the individual differences are discussed and respected, and the team should establish

and document a clear norm on how to collaborate (e.g., put into a google doc).

In step 4 of the routine, advisors can combine direct instruction with guided discovery to explain

the use of design documentation and iterative design principles if students didn’t discuss them

during step 3, for example:

● It’s important to keep track of the design process and document everyone’s ideas and

tasks clearly in a collaborative design process. Can anyone think of some benefits of it?

33

https://docs.google.com/document/u/0/d/1p1cZpKz1PKRc9Tgzz9yVl5pTX473mXq6GkFLryrmLmI/edit
https://canvas.cmu.edu/courses/17230/assignments/273714

Project proposal, Storyboard, User survey (development & revision)

These three components of the workshops are the clear illustration of the assessment as

instruction idea (Big Ideas Synthesis), as the working development and the feedback loop of

these components are both important assessment tools and instructional activities in the

meantime. As discussed with the specific rubrics in the previous sections, the instructions given

around these components are primarily practice & feedback and guided discovery.

Project advisors should tailor the feedback according to students’ project and with the help of

rubrics. The group discussion format can also nicely accommodate students with mildly different

experience level, as students who understand the concepts better can consolidate their

knowledge in explanations (Wiggins, Wiggins & McTighe, 2005), and students who are less

comfortable with the idea of timeline organization, storyboard development, or user survey

analysis will be able to explore and understand the contexts before receiving the explanation and

learning the conceptual framework of design (Just-In-Time Telling, Schwartz, Tsang & Blair, 2016).

Next semester will be the first time that this unit is being offered in Project Ignite, so we wouldn’t

have sample students’ work for these 3 components. But students can always search for online

resources and templates to build more intuition on what a good (proposal, storyboard, survey)

looks like, which could be an open exploration activity in step 3 or 6 of the routine.

App development & programming practices (basics / tailored)

The app development and programming practices activity will be direct instruction combined with

practice & feedback and guided discovery, it should be tailored according to the time of the

workshop and students’ needs. For example, advisors can start off providing more direct

instruction as a basic overview of app development languages, tools, platforms, the ideas of code

usability, readability, and robustness, and with the code review assessment, advisors can

incorporate some guided discovery and practice & feedback to help students discover the

problems in code design, such as asking questions like:

● What may be some potential problems with this code?

● Remember the usability, readability, and robustness issue we just talked about? Could you

try to explain your understanding of these concepts in your own words? (explanation and

active learning idea in Big Ideas Synthesis)

● (if students encounter a specific bug in their code) What have you tried to debug? What

do you think could potentially go wrong? What are you confused about?

They may increase the level of difficulty or introduce some advanced functionality for their MVP if

they have a group of students with more programming skills or in later half of the workshops.

34

https://docs.google.com/document/u/0/d/1p1cZpKz1PKRc9Tgzz9yVl5pTX473mXq6GkFLryrmLmI/edit
https://docs.google.com/document/u/0/d/1p1cZpKz1PKRc9Tgzz9yVl5pTX473mXq6GkFLryrmLmI/edit

For direct instructions, advisors can consult existing resources to create slides and talk students

through some important concepts. If students decide to develop an IOS app, advisors can use

Apple’s handbook for XCode and Swift, or adopt the lecture notes of CMU’s student-taught

course 98-222 (Introduction to IOS development) for demo examples and glossary explanations.

Advisors can project (if in person) or share (if remote) their screens so that students can see a

Worked Example (Schwartz, Tsang & Blair, 2016), which will help students see the exact visual

experiences they’ll have interacting with the app development platforms.

For example, an advisor can explicitly explain how to use breakpoint to debug in XCode by

saying the following, while presenting the screen like in Figure 2.

● Programmers use breakpoints to check values or perform other debugging operations,

where a breakpoint is an intentional stopping or pausing place in a program.

● We can create a breakpoint by clicking here (mouse pointing) on the left of the line where

you want execution to pause. In this case, we added the breakpoint to the line

var names = ["Tammy", "Cole"]

Figure 2. Breakpoint, an intentional stopping or pausing place in a program①

35

https://lor.instructure.com/resources/61955917ffd744c7bee81d987412fd88?shared
https://www.andrew.cmu.edu/course/98-222/lectures.html
https://developer.apple.com/library/archive/referencelibrary/GettingStarted/DevelopiOSAppsSwift/GlossaryDefinitions.html

Project presentation guideline & practice

Since we assume some priori knowledge of presentation in students, the advisors only need to

use guided discovery and practice & feedback with the rubrics to help students refresh the

important concepts in presentation in more systematic ways.

Advisors can provide feedback in terms of the slides deck they created, the organizational

structure of the presentation, and/or the way they describe their product or each member’s

contributions, for example:

● Could you provide an overview of the whole presentation before you go into the

specifics? The preview can better prepare the audience for your following talk and create

a mental framework to help them understand your project.

● You should synthesize the words on slides a little bit more, and use bullet points instead

of paragraphs. Remember that the design principles for presentation slides is “less is

more,” and it shouldn’t occupy too much attention from the audience.

36

Evaluation: how could we improve?

Research to Evaluate Educational Impact

Research Questions and Hypotheses

As described in the Design Justification section, workshop exit surveys are both effective as

assessment and instructional tool: they potentially provide students with more opportunities of

reflection, which means more practices with and thus improvements on their metacognitive

abilities; they offer students chances of directly providing feedback and communicate with

instructors to shape their learning experiences, so it gives students more senses of control of

their learning and higher esteem as persons with equal power, and thus increases their level of

engagement during workshops and satisfaction of their project.

But how beneficial are these surveys in practice? Some of the above benefits depend on

instructors’ feedback or responsiveness to the surveys, so the influence of exit surveys may be

mitigated by instructors’ responses (e.g., if instructors simply ignore the surveys students filled,

the engagement and satisfaction benefits may be lost). Therefore, we proposed the following

research questions and hypotheses:

Research Questions:

1. Does the use of workshop exit surveys improve students’ metacognitive abilities, level of

engagement, and satisfaction with their project?

2. Are workshop exit surveys more effective when instructors are responsive to the surveys?

Hypotheses:

1. The use of workshop exit surveys improves students’ metacognitive abilities, level of

engagement, and satisfaction with their project.

2. The positive effects of workshop exit surveys on students’ metacognition, engagement,

and satisfaction increase when instructors are responsive to the surveys.

Experimental Design

Independent variables (active ingredient): (1) the use of workshop exit survey, and (2) instructors’

responsiveness to the surveys.

Dependent variables: students’ (1) metacognitive abilities, (2) engagement, and (3) satisfaction

with project.

37

Experimental groups & control group

Since each project team only has 4-6 students and it’s impractical to make all project teams focus

on one topic, the statistical power will be too small to produce significant results if we split the

experiment and control groups by project teams. As Project Ignite can recruit 50-60 students

each year and hold 7-10 project teams, students in each team will be randomly assigned with

stratification into each of the following 3 conditions, so in total we have about 15-20 students in

each condition.

1. Treatment group SO (survey only): individual emails of exit surveys will be sent after

workshops to students in this group, their responses will not be available to advisors, and

the discussion will be led by an advisor who hasn't reviewed any surveys and whose

workshop checklist will have the 7th step (exit survey reflection) removed.

2. Treatment group SR (survey and responsive instruction): exit surveys will be sent to

students after workshops, and their responses will only be reviewed by the advisor in

each team who will lead the discussion for the SR group and be reminded to address

students’ feedback.

3. Control group CR: students in this group will not receive any exit surveys, and the

discussion will be led by the same advisor as the SO group.

Design quality assessment

Validity

In-person setting will have low ecological validity for this experiment, since separating the team

into individual rooms is very unnatural, but having parallel discussion thread in the same room

can interfere each other and introduce many more confounders (Nathan & Alibali, 2010), so this

experiment will be implemented in a remote format, where breakout rooms can easily separate

the group with a rationale of providing more individual attention and parallel discussion (step 2 of

the weekly routines). However, the sample size may still be too small to be representative of the

general population or to really have stratified random sampling, which may harm the external

validity.

Besides all assessments designed in the Assessment section, established inventories could be

used to assess students’ metacognitive abilities, engagement, and satisfaction (Puzziferro, 2008;

Pellas, 2014) to ensure the validity of this evaluation research.

A weekly workshop checklist will also be used to ensure that the workshop exit surveys are

being distributed and collected in SO and SR groups, and SR group advisors are specifically

prompted to provide feedback.

38

Reliability

The existing self-assessed inventories should have high test-retest reliability, and inter-rater

reliability can be checked by having multiple researchers observe and assess students’

metacognitive abilities, engagement, and satisfaction. However, a double-blinded procedure will

be hard to implement here since with the counterbalancing design, advisors could have guessed

the research questions, which may harm the reliability of this experiment.

Confounding variables (covariates)

A counterbalanced design should be used so that advisors will switch for the discussion team

they lead each week to control for the instructional styles of advisors themselves. But the

individual differences of instructors and students in terms of responsiveness and feedback styles

may still confound the effect of workshop exit surveys (e.g., students may explicitly tell the

instructors their feedback without the surveys, or instructors may address students’ feedback

without reading the surveys just by experiences or anticipation).

To account for this problem, we can have another form to keep track of the number of feedback

attempts advisors provided and the number of students’ survey responses questions being

addressed during the discussion section. We can analyze these data to see if it reflects our

hypotheses, i.e., these numbers are higher in the SR group than both SO and CR groups.

Research to Evaluate Educational Implementation

To ensure both instructors and students followed or participated in the proposed instruction,

assessment, and evaluation research design as anticipated, we require project advisors to

collaboratively complete the weekly workshop checklist below. The executive board members of

Project Ignite, specifically the President and Vice President of Projects, should also sit in several

workshops randomly to evaluate the implementation, especially of the proposed research.

The forms can be either electronic or in paper, depending on the evaluators’ preferred form of

data collection, but an e-copy will be made and uploaded to the organization’s google drive for

future references. The advisors should partially fill out the weekly workshop checklist during the

workshop to keep track of time and comments (advisors should collaborate, e.g., one may lead

the conversation while the other record in the checklist) and complete it immediately after the

workshop (while the students are doing workshop exit surveys) to prevent memory decay.

The E-board should observe the workshop unobtrusively and take the note quietly to avoid

interference to the activities, and feedbacks should be provided to advisors in a separately

scheduled progress checking meeting (e.g., in the 3rd and 6th week), in which the advisors,

President, and Vice President of Projects will review all previously compiled forms together.

39

Weekly workshop checklist

Note that instructors will complete this individually, in order to remove the 7th step exit survey

reflection section for the advisors leading the discussion for the SO and CR groups next week, so

that only the advisor leading the SR group will be prompted to address students’ surveys and

provide targeted feedback.

Workshop Checklist Team: Week: Date: Advisors: [SR]

Weekly Routines & Logistics ✅
done

[5 minutes] Greetings, overview, attendance taking (google sheet)

[10 minutes] Individual updates, questions, feedback
Students’ questions (name):

●
●

Advisors’ feedbacks:
●
●

[10 minutes] Group discussion, reflections, revisions, next steps
Students’ reflections (name):

●
●

Students’ proposed next steps (name):
●
●

[10 minutes] Brief tutorial or activities (content):
●
●

Additional comments (e.g., difficult to digest, request to slow-down/speed-up):
●
●

[5 minutes] Break, casual conversations

[15 minutes] Work on the next tasks & MVP
Students’ questions (name):

●
●

Additional comments (e.g., discover misconceptions, unclear about directions):
●
●

40

[5 minutes] Closing, summary, workshop exit surveys distributed and collected
Useful students’ feedback from surveys:

●
●

How would you address them in next workshops:
●
●

Reflections & Ratings (1 the lowest - 5 the highest) 1-5

Quality of participation (if > 3, what engaged students the most? if ≤ 3, where did you
lose students? What would you do differently?)
[Q 1, 2, 4 of the workshop exit survey may be partial evidence for engagement]

●
●

Other notes (What went well? What went wrong? What to improve?)
●
●

This checklist above is the version that SR group advisors will receive, as the “students’

questions,” “advisors’ feedback,” “useful students’ feedback from surveys,” and “how would you

address them in next workshops” prompts all trigger responsive feedback. The versions for CR

and SO groups are as below (only the grey sections changes). Specifically, the CR and SO group

will have the grey sections replaced with a simple checkbox, CR will have the workshop exit

survey line completely removed, and the SO group will only need to check the box for “closing,

summary, workshop exit surveys distributed and collected.”

[15 minutes] Individual updates, questions [SO]

[5 minutes] Closing, summary, workshop exit surveys distributed and collected

[15 minutes] Individual updates, questions [CR]

[5 minutes] Closing, summary

41

Conclusion: feedback and project reflection

16 weeks, 150+ hours, 8 drafts, I’ve finally come to this 52 pages document. I have received tons

of feedback, enormous help, and also made countless revisions, and now is the time for

conclusion and reflection for my individual project in EGIA FAll 2020!

Peer Feedback

Rubric Suggestions [from Daniel & Mandy]

Learners: Elaborate on addressing different learners' needs. How would you split
students into teams, based on their own preferences, or having the instructor
assign students with high CS skills and low skills into one group, or having
students who have different interests/skills into one group?

Goals: Link goals with particular tasks to themselves later in the document
Add metacognitive level procedural goals on how students can
● self-assess their familiarity in using certain design and CS apps;
● self-evaluate on their processes in making prototype (did they follow each

step in MVP);
● self-evaluate on the effectiveness of methods they choose for user test

(self-reflect on what methods they choose and why -- e.g. was Google
form the best choice, and why);

● self-evaluate on presentation (whether they are confident in introducing
the product etc).

Practicality: Including a small section on how to work in a group prior to group assignments
can improve cohesion (EGIA CollabU).

Innovation: The blue->red->green color scheme (page 6) might benefit from some color
changes (https://coolors.co/generate)

Others: Give a definition of the near-peer mentoring first, spelling error, etc.

42

https://coolors.co/generate

Instructor Feedback

Poster

Lauren Rebecca Herckis, Dec 21 at 8:13pm

Content: Includes all 5 phases, plus background and references, with clear link to project IGNITE.

Includes multiple aspects of the learner profile, the different types of goals, varied assessment

and instruction approaches. The assessment example is helpful to get detail, especially because

much of the rest is a little cryptic. Think about the audience and what they know vs. don’t so that

you can direct the text to them. The evaluation research idea is clear, but the dependent

measures aren’t included. 4.5/5

Organization: Use of color delineates the sections and shows the flow to follow. QR code is a

nice touch. Appropriate amount of text. Alignment is implied by the goal numbers in the example,

but it would have been nice to have the goal and assessment examples match, and then to have

an instruction example too. Big Ideas are nowhere to be seen on the poster. When asked, the

presenter listed many but said there were too many to list. There could have been a middle

ground perhaps. 2.25/3

Presentation: Did not offer an overview presentation, even when asked. Did respond with depth

to a question about Big Ideas. 0.75/1

Peer Feedback: Good level of detail with both some encouragement and specific suggestions.

Provocative ideas. 1/1

Project

Lauren Rebecca Herckis, Dec 22 at 4:20pm

Topic Topic is clear and complete. You make a compelling case and describe concisely an

appropriate approach to meeting the challenges you describe. 1/1

Step 1 Learners in the Context section is clear and complete. 1/1

Step 2 Your first level of goal description is a helpful overview in table form, with the second level

getting to all the necessary detail. Alignment with standards clearly indicated in parentheticals,

.75/1

43

Step 3 Assessment overview and timeline with clear alignment is helpful. Assessment triangles

are well described, though you do not include information about validity, reliability, and equity for

individual assessments. 1/1

Step 4 Overall climate and routines are detailed, and the WHERETO elements are linked in detail

to goals, the instructional flow, and strategies. .25/.5

Specific Examples in 3&4 Assessment examples are clear and missing only feedback timeline

and information on validity, equity, and reliability. Instructors will need more detail to deliver

instruction, and you leave many instructional decisions to facilitators. .75/1

Step 5 Evaluation Research Very thorough exploration of research to evaluate impact. Your

research to check implementation is interesting but incomplete: What can one learn from a

corpus of completed checklists about the implementation of your design? How will this

information be used to iteratively improve implementation of your design? 1/1

Reflection Your self-assessment is on target and seems honest. I am glad the feedback you

received from instructors and peers was valuable. The “time problem” is indeed a significant

challenge, but I do not think it is unsolvable! No one can do everything, but we all must make the

choices we can live with—we satisfice, even if we are not satisfied. TOTAL = 6.25/7

2/2 Alignment Clearly detailed alignment between goals and specific assessments, as well as

alignment between goals and organization of instruction throughout the course. Design choices

were aligned clearly with organizing principles or big ideas.

2/2 Justification Well-justified design choices throughout the document, with reference to course

materials and big ideas.

2/2 Practicality Your level of detail is excellent, and you’ve done a lot of good work to tailor this

project to the context in which it will be implemented. It’s basically ready to pilot test!

1/1 Innovation Your use of near-peer mentoring and project-based learning are indeed innovative.

I look forward to hearing how it goes!

1/1 Professionalism of Report Well-designed format, interesting cover page, clear table of

contents, good use of color and headings with spacing to help reading flow. Strong use of tables

to show relationships between components.

44

Project Reflection

Self-Assessment of the Project PRODUCT

● How well aligned are your goals, assessment and instruction?

○ My goal, assessment, and instruction are aligned around the same set of activities

including proposal, storyboard, user survey, code review, presentation, etc.

● How did your age level focus impact the design, compared to similar units that have been

or could be designed for younger and / or older age levels?

○ I assumed a lot of prior knowledge in high school students of age 16-18 compared

to younger students, like collaboration, presentation, programming, design

experiences, so many of the times the workshops are structured to help them

activate these prior knowledge. But they still have a lot to learn and may benefit

from direct instructions (compared to college students who may have already

taken CS class with project components), so my design also has some of those

aspects built-in.

● In what ways does your design explicitly and thoroughly exemplify course principles (i.e.,

utilize the big ideas)?

○ I addressed almost all of the big ideas in my project. The project’s developmental

process and organizational structure themselves exemplified alignment and

iterative & backward design, and the use of both in-person and remote format

touched on education technology.

○ I also mentioned ideas of understanding, misconceptions, transfer, authentic tasks,

individual differences, prior knowledge, belonging, motivation, growth mindset,

metacognition, self-directed learning cycle, assessment as instruction, assessment

reliability & validity, self-evaluation, WHERETO, active learning, just-in-time telling,

deliberate practice, feedback loop, making, worked example, and evaluation

research.

○ I referred to these big ideas using either direct citation from source reading or

linked to our team’s big idea synthesis resource document.

● How clearly have you described all five sections of your design so that it would be

practically applicable and user-friendly for an educator?

○ I structured my project clearly into 5 sections and each section has a very

descriptive naming, so just by reading the table of contents, an educator user

would be able to know where to check if they have questions with specific

45

phases, or if they read everything from the beginning they’d be able to know how

to implement things in practice, as examples and tables are provided all along.

● What resources and/or prior knowledge would be required of an educator implementing

your design?

○ The educator would need to know how to develop an app themselves (and all

related concepts of storyboarding, user survey, team collaboration, presentation)

to the degree that they can explain important concepts, give instructive feedback,

and help students build their projects. They also need to have access to electronic

devices like laptops that’s necessary for communication and code demo.

● What are the innovative aspects of your design?

○ Content-wise, I use near-peer mentoring and project-based learning extensively,

and I put it into a practical, after school program context, where the primary

instructional method is practice & feedback and directed exploration, and my

audience are novice educators (CMU students as project advisors, and I wrote a

lot of basics and theories with abundant references to fit their needs), all of which

are all unique aspects.

○ Format-wise, I included a lot of in-text hyperlinks to help users navigate across the

document and also more clearly see the alignment idea, which is also innovative.

● How did you incorporate peer feedback to enhance your project product?

○ I summarize the feedback from peers and implement them selectively based on

the cost-and-effect payoff. E.g., I feel like the priority relations of my current color

palette is clear, and making that change could potentially take longer than

necessary, so I didn’t change it. And implementing the pre-entry survey idea is not

quite feasible given the limited time, so I also put it as my future plans. But I do

incorporate all the other feedback to some extent.

Self-Assessment of the Project PROCESS

What were the strengths and weaknesses of your individual project design process?

● What challenges did you face as you worked through the project this semester?

○ Time constraint and misunderstanding. I was having a very obscure idea about

what the document would look like before the sample projects were posted, so I

wasted a lot of time writing things that are less useful or thinking about what to

write, and working on big idea synthesis and my individual project at the same

time is a lot of work.

46

● How did you overcome them and/or why do some remain?

○ After the sample projects were posted I got much better ideas about what I should

do. And the time problem is unsolvable. It’s less about working smarter vs. harder,

I just need days instead of hours to write all out. Or I may have worked in a wrong

way that I didn’t realize.

● How did the experience of giving and receiving peer feedback impact your project

process?

○ Seeing other people’s work and receiving feedback from fresh eyes help me see

my own strengths and weaknesses and help me make changes on my final draft.

● What are your next steps, either with respect to this project if you plan to continue it, or

with respect to other projects that could benefit from this approach?

○ For this project, I’ll probably expand on the section of pre-entry survey and project

groupings. I thought about implementing it initially, but it doesn’t quite fit into my

assessment and/or evaluation sections. Project Ignite as a student organization

actually did implement pre-survey ideas in our application and team formation

stages and I proposed some interesting things to facilitate this process, but I just

didn’t formally write it out in this document.

○ I can possibly also write the Methods section separately to talk about subjects,

procedure, materials, timeline, data collection & scoring in a more formal way

following the research paper format.

○ For other prospective projects, the step development process I used is indeed

very helpful, and the backward design idea can be applied to more than

educational design areas.

● The next time you have an opportunity to begin a new project, how do you plan to

proceed differently than you have on this project?

○ I’ll directly use google doc to start my project and get settled with a template, so I

don’t need to waste time on the ineffective designs of less helpful softwares.

○ I’ll also ask for samples earlier in the developmental process (probably not when I

write the background and learners profile steps since I also want to start fresh

without being swayed / intimidated by fully-developed sample work, but definitely

before the goals so that I can see how to write and organize goals).

47

Resources

Personal Background

I learned CS as a student, worked in a CS learning platform to create exercises for high school

students before, and tutored on a project involving programming components in my student

organization.

Educational Materials

● Khan Academy (good resource from basics to advance)

● CS Academy (CMU-student initiated, gamy, graphics-based intro for HS students)

● Code Academy (higher level, more professional, not free)

● CS for All (help schools offer quality CS instructions and address equity issues)

Professional Contact

● Mark Stehlik, CS professor who knows about education practices of high schoolers and

supports programming for social good

● Erin Cawley, the Program Manager of CMU's CS Academy

● Leigh Ann Sudol DeLyser, former EGIA student who got a self-defined CS Education PhD,

run CSforAll now

● Girls Who Code, SCS4All, Women@SCS groups at CMU, Project Ignite

Meeting Notes with Contacts

● Friday 9/25 11:30 AM EST with Mark Stehlik

● Wednesday 11/25 2pm EST with Erin Cawley

Questions:

1. What’s most needed by the grade 11-12 students?

Get a sense of the learner profile to see if you’ve got that in the right ballpark.

2. What’re some priorities for the knowledge vs. procedure vs. disposition goals related to

app development?

3. What might you find necessary as metacognition goals?

4. What works well for instruction, and how it can be assessed? (details of what work best

for instruction and assessment)

48

https://remakelearning.org/person/cawley-erin/
https://academy.cs.cmu.edu/

5. What’s a reasonable sequence and scope design? How can it be most useful and easily

digestible for novice teachers?

6. What’s a reasonable amount of content to be taught in 10hrs of instructional time in 10

weeks? What can be the expected product from a group of students?

7. Get students to collaborate in the distance learning situation?

8. What’re some key remaining research questions?

9. What’re some of the most important things in the evaluation research of instructions?

10. Any known & popular inventories to assess students’ (1) metacognitive abilities, (2)

engagement, and (3) satisfaction?

Notes:

● Biggest challenge: CS is not required everywhere, so commonly we have a mixed

classroom, students may have exposure at home or just started.

○ Solution: differentiating curriculum to fit all students (hardest), or allowing for

students don’t walk away with same skill (hard to set goals), or similar to ETC

project-based learning, have different teams match with diverse strength areas,

set goals for the class & groups, assess on the group rather than individual level

● Metacognitive goals: building team dynamic and problem solving skills -> growth mindset

○ How to access: e.g., pre- and post- self reflection & survey on skill, prior

knowledge, expectation of working on app, most likely work in collaboration with

others or self, how many hours anticipate working with others

● Pre- and post surveys: prior knowledge coming in with, understanding of goals and

hoping to get, self-efficacy, confidence in skill, so we can get really good visual of where

they come from and how they end up

● Exit survey: want it short! 3 questions: grab key concept & confusing & yes/no, alternate in

weeks to get all answers

● How useful are rubrics? Teaching people how to grade things, rules -> no more than 5 pts

scale, start with goal, level 5 & all objectives met so full score, e.g., 3 categories: group

dynamic & code & design, clearly, execute properly & comment & easy to use, 4 would be

clear enough but still execute properly, etc. easy user experiences nice animation

● Rubrics can limit students’ creativity, so don’t provide rubrics as grading thing, instead as

guide to help teachers know how to prompt students, what should a finished example

include, guiding questions to prompt students to think & go through

● Grade 11-12 college level CS 1 course, prepare students for materials like that,

problem-solving & app development, UX design skills, Accessible platforms for coding &

app development & design, not learning to code for 10 weeks

49

● Evaluating focus: e.g. on understanding process of app development or functional

programming skill, nice presentation vs. code executing properly. Needs a variety of

survey questions: formative or summative

● Students can struggle with what they could make initially, so provide them with end goal

that they are building, but don’t let them come up with creative solutions right away, need

2-3 weeks, more follow an iterative design project idea

● Challenge of remote setting: access good internet & resources on devices, and class

collaboration & warm up, relationship building

● Making sure there’s time for students to get to know each other: virtual icebreakers, more

related to design, follow on instagram?

● Breakout rooms 2 minutes & come back together, for class relationship building sake,

instructors better not in rooms, but policy/legality may need instructors in rooms

○ Key: give a prompt & task to come back to full room with

● Making sure to use a running journal to keep track of group work

50

Appendix A: Selective Standards from CSTA K-12 Computer

Science Standards (2017)

3A-AP-13
Create prototypes that use algorithms to solve computational problems by leveraging prior
student knowledge and personal interests.

3A-AP-15
Justify the selection of specific control structures when tradeoffs involve implementation,
readability, and program performance, and explain the benefits and drawbacks of choices
made.

3A-AP-16
Design and iteratively develop computational artifacts for practical intent, personal
expression, or to address a societal issue by using events to initiate instructions.

3A-AP-18
Create artifacts by using procedures within a program, combinations of data and
procedures, or independent but interrelated programs.

3A-AP-19
Systematically design and develop programs for broad audiences by incorporating
feedback from users.

3A-AP-21 Evaluate and refine computational artifacts to make them more usable and accessible.

3A-AP-22 Design and develop computational artifacts working in team roles using collaborative tools.

3A-AP-23
Document design decisions using text, graphics, presentations, and/or demonstrations in
the development of complex programs.

3B-DA-07
Evaluate the ability of models and simulations to test and support the refinement of
hypotheses.

3B-AP-14
Construct solutions to problems using student-created components, such as procedures,
modules and/or objects.

3B-AP-15
Analyze a large-scale computational problem and identify generalizable patterns that can
be applied to a solution.

3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs.

3B-AP-17 Plan and develop programs for broad audiences using a software life cycle process.

3B-AP-20
Use version control systems, integrated development environments (IDEs), and
collaborative tools and practices (code documentation) in a group software project.

3B-AP-21
Develop and use a series of test cases to verify that a program performs according to its
design specifications.

51

3B-AP-23 Evaluate key qualities of a program through a process such as a code review.

3B-AP-24
Compare multiple programming languages and discuss how their features make them
suitable for solving different types of problems.

3B-IC-25
Evaluate computational artifacts to maximize their beneficial effects and minimize harmful
effects on society.

52

References

Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., & Norman, M. K. (2010). How learning works:

Seven research-based principles for smart teaching. John Wiley & Sons.

Armstrong, T. (2016). The power of the adolescent brain: Strategies for teaching middle and high school

students. ASCD.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the

role of the computer science education community?. Acm Inroads, 2(1), 48-54.

Berger, K. S. (2003). The developing person through childhood and adolescence (6th ed.). Worth

Publishers.

Brigid J. S. Barron, Schwartz, D., Vye, N., Moore, A., Petrosino, A., Zech, L., The Cognition and Technology

Group at Vanderbilt. (1998). Doing with Understanding: Lessons from Research on Problem- and

Project-Based Learning. The Journal of the Learning Sciences, 7(3/4), 271-311.

Clarke-Midura, J., Poole, F., Pantic, K., Hamilton, M., Sun, C., & Allan, V. (2018, February). How near-peer

mentoring affects middle school mentees. In Proceedings of the 49th ACM Technical Symposium

on Computer Science Education (pp. 664-669).

Computer Science Teachers Association (2017). CSTA K-12 Computer Science Standards, Revised 2017.

Retrieved from http://www.csteachers.org/standards.

Dole, S. , Bloom, L. , & Doss, K. K. (2017). Engaged Learning: Impact of PBL and PjBL with Elementary and

Middle-Grade Students. Interdisciplinary Journal of Problem-Based Learning, 11(2).

Gal-Ezer, J., & Stephenson, C. (2014). A tale of two countries: Successes and challenges in K-12 computer

science education in Israel and the United States. ACM Transactions on Computing Education

(TOCE), 14(2), 1-18.

Holmes, V. L., & Hwang, Y. (2016). Exploring the effects of project-based learning in secondary mathematics

education. The Journal of Educational Research, 109(5), 449-463.

K-12 Computer Science Framework Steering Committee. (2016). K-12 computer science framework. ACM.

Ko, A. J., Hwa, L., Davis, K., & Yip, J. C. (2018, February). Informal mentoring of adolescents about

computing: Relationships, roles, qualities, and impact. In Proceedings of the 49th ACM technical

symposium on computer science education (pp. 598-603).

Puzziferro, M. (2008). Online Technologies Self-Efficacy and Self-Regulated Learning as Predictors of Final

Grade and Satisfaction in College-Level Online Courses, The American Journal of Distance

Education, 22(2), 72-89, DOI: 10.1080/08923640802039024

53

Master, A., Cheryan, S., Moscatelli, A., & Meltzoff, A. N. (2017). Programming experience promotes higher

STEM motivation among first-grade girls. Journal of experimental child psychology, 160, 92-106.

Menzies, V., Hewitt, C., Kokotsaki, D., Collyer, C., & Wiggins, A. (2016). Project-Based Learning: evaluation

report and executive summary.

Merritt, J. , Lee, M. , Rillero, P. , & Kinach, B. M. (2017). Problem-Based Learning in K–8 Mathematics and

Science Education: A Literature Review. Interdisciplinary Journal of Problem-Based Learning, 11(2)

Michelene T. H. Chi & Ruth Wylie (2014) The ICAP Framework: Linking Cognitive Engagement to Active

Learning Outcomes, Educational Psychologist, 49:4, 219-243, DOI: 10.1080/00461520.2014.965823

Nathan, M. J., & Wagner Alibali, M. (2010). Learning sciences. Wiley Interdisciplinary Reviews: Cognitive

Science, 1(3), 329-345.

Pellas, N. (2014). The influence of computer self-efficacy, metacognitive self-regulation and self-esteem on

student engagement in online learning programs: Evidence from the virtual world of Second Life.

Computers in Human Behavior, 35, 157-170.

Schwartz, D. L., Tsang, J. M., & Blair, K. P. (2016). The ABCs of how we learn: 26 scientifically proven

approaches, how they work, and when to use them. W W Norton & Co.

The Igniters. (2020, December 5). Big Ideas Synthesis Final Draft. In Educational Goal, Instruction, and

Assessment, Fall 2020.

Vakil, S. (2018). Ethics, identity, and political vision: Toward a justice-centered approach to equity in

computer science education. Harvard Educational Review, 88(1), 26-52.

Wiggins, G., Wiggins, G. P., & McTighe, J. (2005). Understanding by design. Ascd.

Wikipedia contributors. (2020, November 7). Minimum viable product. In Wikipedia, The Free Encyclopedia.

Wikipedia contributors. (2020, September 20). Iterative design. In Wikipedia, The Free Encyclopedia.

Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2016). Expanding computer science education in schools:

understanding teacher experiences and challenges. Computer Science Education, 26(4), 235-254.

54

https://docs.google.com/document/d/1p1cZpKz1PKRc9Tgzz9yVl5pTX473mXq6GkFLryrmLmI/edit?usp=sharing
https://en.wikipedia.org/w/index.php?title=Minimum_viable_product&oldid=987489532
https://en.wikipedia.org/w/index.php?title=Iterative_design&oldid=979347236

